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The stability of weakly compressible boundary-layer flow over a spring-mounted 
piston is examined theoretically by modelling the mean boundary layer at low 
Strouhal numbers by means of a step-function velocity profile. This constitutes a 
prototype problem for the treatment of the interaction of unsteady boundary-layer 
flow with a compliant surface, and the present discussion complements a recent 
analysis due to Ffowcs Williams and Purshouse by incorporating the influence of flow 
separation at the edges of the piston. This is effected analytically by application of 
the unsteady Kutta condition at both the leading and trailing edges of the piston. 
At high Reynolds numbers and in the case of light fluid loading i t  is predicted that 
the separated flow can cause piston flutter. Stability criteria are derived for a 
rectangular piston of large aspect ratio. 

1. Introduction 
Kramer (1957) has suggested that the use of compliant wall coatings of appropriate 

construction may lead to a significant reduction in turbulent boundary-layer drag. 
Such a reduction is likely to depend on the existence of a strong coupling between 
the wall motion and the turbulence. Flow/surface interactions are frequently ‘noisy ’ 
(Curle 1955), however, and conditions that optimize the reduction in drag on, say, 
the fuselage of a wide-bodied jet transport, could well produce unacceptably high 
levels of aerodynamic sound. This issue is ignored in most of the recent studies of 
drag reduction (for an extensive bibliography see Frenkiel, Landahl & Lumley 1977). 

The theoretical treatment of unsteady boundary-layer flow over a compliant 
surface is in practice too difficult to undertake in full generality. It is known 
(Benjamin 1960, 1963) that  the basic instability of incompressible laminar flow over 
a rigid wall is not diminished when the surface is dissipative and compliant, and Howe 
(1979) has shown how a dissipative wall can attenuate incident sound while at the 
same time enhancing the intensity of the boundary-layer turbulence. Perhaps the 
simplest prototype model problem that involves simultaneously compliant 
surface/mean-flow/acoustic interactions is that discussed by Ffowcs Williams & 
Lovely (1975), Leppington & Levine (1979) and Levine (1980). These authors consider 
small oscillations of a circular spring-mounted piston whose face is flush with a plane 
rigid baffle in the undisturbed state. The stability and acoustic radiation were 
examined in the presence of an inviscid uniform mean flow. When the perturbed 
motion of the fluid is taken to be irrotational, Ffowcs Williams & Lovely demonstrated 
that the piston exhibits a t  most a static divergence instability, in which the piston 
is sucked into the flow until there is ultimate mechanical failure or equilibrium is 
established a t  a position determined by the nonlinear characteristic of the spring. 

An airfoil in steady flight can experience an analogous instability, known as 
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torsional divergence (Bisplinghoff & Ashley 1975, 36). But in practice ‘flutter’ 
instabilities, in which time-periodic oscillations grow steadily in amplitude, are more 
important in that they tend to occur a t  much lower velocities. They are absent in 
the potential-flow modelling of the piston problem because of the neglect of the mean 
shear of the boundary layer. Disturbances that are generated in the shear layer by 
the piston induce wall pressure fluctuations having a component in phase with the 
piston velocity and can therefore do work on the piston, resulting in large-amplitude 
oscillations and the emission of intense aerodynamic sound. A simple means of 
incorporating mean shear has been proposed by Ffowcs Williams & Purshouse (1981) 
in terms of a more general theory which draws an analogy between a real turbulent 
flow and an idealized inviscid model in which all of the mean shear is concentrated 
into a plane vortex sheet a t  a stand-off distance S from the wall (which characterizes 
the thickness of the boundary-layer buffer zone). Small potential-flow perturbations 
are permitted on either side of the vortex sheet, whose motion in response to  that 
of the piston and the boundary-layer turbulence can in principle involve the 
excitation of Kelvin-Helmholtz instability waves that grow indefinitely with distance 
downstream. In fact, such waves are deliberately excluded from the Ffowcs Williams- 
Purshouse theory: flutter instabilities are again found to be absent and they show 
that the static divergence of Ffowcs Williams & Lovely is possible provided that the 
radius of the piston exceeds about 5s. 

In  this paper we shall argue on the basis of a linearized analysis that  flutter can 
occur when the wake suppressed in the Ffowcs Williams-Purshouse theory is allowed 
to develop downstream of the piston. Linear perturbation theory predicts exponential 
growth of the wake with downstream distance and the detailed results cannot 
therefore be applicable for more than a few characteristic lengthscales from the piston, 
after which nonlinear processes will have evolved sufficiently to change the character 
of the motion. Nevertheless, the theory may still give an adequate representation of 
the backreaction of the wake on the piston. Indeed, careful observation (D. W. Bechert 
1981, private communication) indicates that  the motion in the vicinity of the trailing 
edge of a splitter plate separating flows of different mean velocities agrees well with 
the predictions of a linearized treatment of the unstable free shear layer in the wake 
of the plate. This suggests that  the upstream influence on their source of shear-layer 
fluctuations in the nonlinear region is likely to be small. The implications of this 
hypothesis in the potential-flow analysis are discussed in $2. 

The piston and boundary layer are strongly coupled a t  small values of the Strouhal 
number based on boundary-layer thickness. But contrary to  expectation i t  turns out 
in this case ( $ 2 )  that no wake is formed when the boundary layer is modelled by a 
linearly disturbed vortex sheet. This is a consequence of the inviscid potential-flow 
approximation. When the curvature of the piston is large, for example a t  the edge 
of a circular piston of top-hat profile, the action of viscosity in a high-Reynolds-number 
flow would tend to produce flow separation. This can be included formally in an 
inviscid analysis by application of an unsteady Kutta condition, as in thin airfoil 
theory (Ashley & Landahl1965), and such a calculation is made in $3.  The importance 
of viscosity was noted by Ffowcs Williams & Lovely (1975), who invoked it to limit 
the magnitude of potential-flow suction forces a t  sharp edges, but tacitly assumed 
that the corresponding contribution to the suction force had no component in phase 
with the velocity of the piston. The Kutta condition is particularly easy to apply when 
the boundary-layer thickness S is small relative to  all other pertinent lengthscales, 
and we consider two cases that,  for mathematical convenience, assume the piston to 
be two-dimensional, or a t  least of high aspect ratio. In  the first of these separation 
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FIGURE 1. A circular piston of radius R executes small oscillations beneath a boundary layer whose 
mean-velocity profile is modelled by a step function. 

occurs only at the trailing edge of the piston, and flutter instability is possible a t  finite 
aspect ratios when the reduced frequency E ,  say, based on the width of the piston 
is small ($4). In  the second case separation is postulated to occur at both the leading 
and trailing edges : instability is now possible a t  all reduced frequencies, although 
more likely when E is small. 

2. Potential-flow modelling of the instability problem 
Consider small oscillations of a spring-mounted circular piston of radius R whose 

face is flush with an infinite plane baffle in the undisturbed state (see figure 1) .  The 
baffle lies in the plane x2 = 0 o f a  rectangular coordinate system ( x l ,  x2,  x3), with the 
origin a t  the equilibrium position of the centre of the piston. Parallel to the x1 axis 
there exists a mean flow that has speed I/ in the free stream outside the boundary 
layer; the x3 axis is directed out of the plane of the paper in the figure. 

Let h( t )  denote the displacement of the piston in the positive x2 direction from the 
equilibrium position. For small oscillations it is assumed that h satisfies the linear 
equation 

d2h dh 
dt dt m,+P-+Kh = - d h ,  

in which m, P, K denote respectively the mass, internal-damping factor and the spring- 
stiffness coefficient of the piston. The net normal force exerted on the piston by the 
fluid is determined by the fluid-loading operator d ,  which is defined in terms of the 
perturbation pressure p ( x ,  t )  by 

where, in the linearized approximation, the integration is taken over the region 
S:Ix;+x;I i< R , x 2 = 0 .  

The complex eigenfrequencies w of the oscillations are the roots of the characteristic 
equation 

mw2+iPw-K = d ' ( w ) ,  (2.3) 

obtained by setting (2.4) 

3-2 
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in (2.1), where ho is constant. It may be assumed without loss of generality that 
Re(w) 2 0, and we can write 

where A,, dI are real. Piston flutter occurs when the net effective damping is 

d(0) = d&) + id,(o), (2.5) 

negative, i.e. when 
Im ( w )  > 0, 

in which case oscillations of frequency Re(@) grow in amplitude in proportion to 
exp (Im ( w )  t) .  

When both the fluid loading and internal damping of the piston are small, so that 
significant changes in amplitude occur only over many cycles of oscillation, the roots 
of (2.3) do not differ appreciably from + w o ,  where 

wo = (g. 
To leading order we have 

(2.7 1 

and condition (2.6) for the onset of fluttering becomes 

d I ( W 0 )  ’ Po0 ’ 0. (2.9) 

The static divergence discussed by Ffowcs Williams & Lovely (1975) corresponds 
to a root of (2.3) that  is purely imaginary, and occurs when d is large enough to be 
comparable with the inertia mw2 and stiffness K of the spring. This generally requires 
a large mean-flow velocity (see (2.19) below). 

I n  the application of their general theory Ffowcs Williams & Purshouse (1981) 
consider the linearized problem in which the real boundary-layer flow over the piston 
is replaced by one in which the free stream a t  speed U is separated from the wall 
by a region of stagnant fluid of width 6. The mean shear is concentrated into a vortex 
sheet of strength U.  The same model is adopted here, except that, as illustrated in 
figure 1, the velocity profile will be generalized to include a mean flow a t  speed V(  < U )  
in the x1 direction between the wall and the vortex sheet. This is the velocity a t  which 
boundary-layer disturbances of wavelength $ S are convected downstream, and its 
inclusion provides an additional degree of freedom, which is useful in interpreting 
predictions of the theory. Modelling the boundary layer in this way should be an 
adequate first approximation a t  small Strouhal numbers w&/ U. 

When viscous stresses are neglected the perturbed motion of the fluid due to 
oscillations of the piston can be expressed in terms of a velocity potential Q,e-i”t on 
either side of the vortex sheet. According to linear theory, the boundary conditions 
that pressure and fluid particle displacement should be continuous across the vortex 
sheet may be applied at x2 = 6. The x2 component of velocity a t  the wall (z, = 0) is 
non-zero only at the piston, where it equals the material derivative of the normal 
displacement, i.e. for the circular piston 

(2.10) 

where the Heaviside step function H ( z )  = 0 , l  respectively as x 5 0. In  xz > 6 it is 
required that Q, should be bounded a t  large distances from the wall. 

The boundary condition (2.10) requires the normal velocity v, = aQ,/ax, to have 
a &-function singularity at the edge of the piston, which differs from the much weaker 
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FIQURE 2. Illustrating the formulation of the boundary conditions for a sharp-edged piston. 

algebraic singularity ( -  x-4 a t  most, as x -+ 0) that  potential theory predicts for flow 
near a square edge. The use of (2.10) can be justified by means of the following 
argument. 

Consider, for example, conditions a t  a leading edge, as illustrated in figure 2, and 
let the origin of coordinates be temporarily displaced to  this position (point 0 in the 
figure). Inviscid theory requires that a fluid particle incident along the wall will also 
travel along the surface of the piston. Let A ,  B have x1 coordinates x1 T A respectively. 
The mean normal velocity between A and B is then 

(2.11) 

where is the normal displacement of the fluid particle (i.e. in the x2 direction), and 
r is its transit time from A to  B. The distance d over which the mean flow is perturbed 
from its uniform velocity V must be of the same order as the displacement h of the 
piston from the wall. Hence, provided that h < A, we can take r = 2A/V ,  and 

The fractional departure of this expression from the exact value will be proportional 
to some non-negative power of the displacement h. Linear theory ignores such 
corrections, and the limit A -+ 0 then gives (2.10). According to this point of view, 
one is not interested in the detailed behaviour of the flow at the edge, but only in 
its influence a t  distances from the edge exceeding the piston displacement. 

Following Ffowcs Williams & Purshouse (1981) we shall for the moment assume 
the flow to be incompressible, in which case the potential q5 satisfies the Laplace 
equation Vzq5 = 0 in 0 < x2 < S, x2 > 6. The boundary conditions are easily satisfied 
if q5 is expressed as a Fourier integral, and in 0 < x2 < S we find 

) cosh (I k I x2)  eik. dk ,  dk,, 1 (w-  Vk,)2  sinh (I kl 8)  + (w-  Uk,)2 cosh (I k1S) 
(w - V k , ) 2  cosh (I kl 6 )  + (w - Uk,)2 sinh (I kl 8)  

where 

Here 

(2.13) 
k = ( k l , 0 , k 3 ) ,  Ikl = ( k : + k i ) l .  

1 "  
f(k) = H(R-I~I)e-~~.~dx,dx, ( x2  = 0) 

( 2 4  -m 

(2.14) 
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defines the Fourier transform of the piston profile in terms of the Bessel function J,. 
I n  obtaining (2.13) it  has been assumed that the density p,, say, of the fluid is constant 
throughout the flow. 

The solution (2.13) is substantially equivalent to that given by Ffowcs Williams 
& Purshouse (1981) when their turbulence volume source terms are discarded. It 
represents a flow that is bounded for all time, but it does not satisfy the causality 
condition that all disturbances of the boundary layer that are correlated with the 
motion of the piston arise as a consequence of that motion. Causality requires 4 to 
be a regular function of w for arbitrary large and positive values of Im ( w )  (Titchmarsh 
1948, chap. 1). The causal response of the flow for any given real or complex value 
of o can therefore be obtained by analytic continuation of the solution (2.13) from 
Im ( w )  = + ico. Any singularities of the integrand that cross the real k , ,  k ,  axes during 
this operation are to be accommodated by an appropriate deformation of the 
integration contours. 

The perturbation pressure p ( x ,  t )  = P(x) eciwt,  say, is given in 0 < x2 < 6 by the 
linearized Bernoulli equation 

(2.15) 

and this may be used to calculate the fluid-loading operator by making use of the 
definition (2.2) : 

Jd(w)ho = P.S,(i.- V 3 # J ~ x , , 0 , x 3 ) d x 1 d x 3 .  (2.16) 

Using (2.13), we obtain the formal representation 

)dk ,dk , .  (2.17) 
( w -  Vkl)2sinh(IkIS)+(o- Ukl)2cosh(IkIS) 
(w  - VkJ- cosh (I kl S) + (w-  U k J 2  sinh (I k 16) 

Actually, this formula is generally valid only for pistons having smooth profiles. The 
discontinuity h, in fluid-particle displacement at the edge of a piston of top-hat profile 
implies thatf(k), defined in (2.14), can decay no faster than I k 1-8 as I k I +a. It then 
follows from (2.17) that d ( w )  is unbounded except when V = 0, the case treated by 
Ffowcs Williams & Purshouse (1981), and we shall discuss this first. 

When wS/U $ 1 (and V = 0) Ffowcs Williams & Purshouse obtained the leading 
approximation to (2.17) (the integration being confined to the real k,,  k ,  axes) in the 

(2.18) 
form 

The first term on the right of this result represents the additional inertia of the motion 
due to the fluid displaced by the piston. The second is independent of w ,  and 
corresponds to a modification of the effective spring stiffness by the flow. X is a 
dimensionless real coefficient, which depends on the ratio R/S. Substitution of (2.18) 
into (2.3) gives the characteristic frequency 

d ( w )  = -Epo R302 +po U2RX. 

(2.19) 

when the internal damping of the piston is neglected. Provided that X > 0 it follows 
that the oscillations of the piston are stable. Ffowcs Williams & Purshouse show that 
X is negative for R/S 3 5, and a sufficiently large mean-flow velocity U can then 
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induce a divergence instability of the type predicted by Ffowcs Williams & Lovely 
(1975). 

These conclusions are, however, based on an evaluation of (2.17) that deliberately 
suppresses any contribution from singularities of the integrand that are encountered 
during application of the causality condition by analytic continuation in the w-plane. 
To examine the influence of causality we shall assume the fluid loading to be small 
enough that the characteristic frequencies are well approximated by (2.8), in which 
d ( w )  is to be evaluated a t  the real frequency wo. Taking w = wo in (2.17), we see that 
the integral along the real k,,  k ,  axes is real and does not affect the stability, since 
it makes no contribution to the imaginary part d I ( w o )  of d. When IwI is large 
(relative to U/S)  the integrand in (2.17) has simple poles a t  

w ( l + i )  
k ,  = ____ 

U ’  
(2.20) 

which lie in the upper half of the k,  plane if $T < argw < gn. As o moves from this 
sector to wo (> 0) one of these poles crosses the positive real k ,  axis to the point 
K = wo( l  - i ) / U ,  and therefore makes a residue contribution to d ( w o )  given by 

) dk3. (2.21) 
{w: sinh (I k IS) + (wo - Uk# cosh (I k IS)} 

a 
akl 

X 

- {wz0 cosh (IklS) + (wo- UIC,)~ sinh (I klS)} kl=K 

This is valid only for KB 9 1 ,  when the pole can be identified with a Kelvin-Helmholtz 
instability wave of a free shear layer proportional to exp ( ~ K x ~ ) ,  whose amplitude 
(according to  linear theory) increases indefinitely with distance downstream of the 
piston. Since lk16 = ( k g + ~ ~ ) j S  1, the remaining integration in (2.21) can be 
evaluated asymptotically. For example, in the case of small reduced frequencies 
wo Rl U we obtain 

d K z -  

The imaginary part of this expression is alternately positive and negative in 
frequency intervals of width rU/ZS,  which indicates (cf. (2.9)) that  the necessary 
condition d, > 0 for the occurrence of flutter can be satisfied, although flutter is 
probably unlikely in practice because d, is exponentially small. 

Ffowcs Williams & Purehouse (1981) emphasized that the strongest interaction 
between the piston and shear layer must occur at small values of the Strouhal number 
w o S / U .  Similarly, fluttering is likely to occur only if the reduced frequency wo R / U  
is not too large, since otherwise phase cancellation of pressure fluctuations on the 
surface of the piston will produce very small values of d I ( w o ) .  But according to (2.1 7) ,  
in the extreme in which S + 0, so that 6 is small compared with all other length scales, 
we have for arbitrary V 2 0 

(2.23) 

This is unbounded for the sharp-edged top-hat piston, irrespective of the value of 
V .  The integral can always be made finite, however, by suitably ‘rounding’ the edge 
of the piston, and the top-hat case may be regarded as the limit of a sequence of such 
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rounded profiles. Evidently dI = 0 for real w = wo and each member of the sequence, 
so that, although "I, is ultimately unbounded, in the approximation of small fluid 
loading the motion is stable. This is a situation in which the piston has a significant 
influence on the boundary-layer motion in its immediate vicinity, but, surprisingly, 
the theory predicts that  no wake i s  generated. Indeed, if [e-iwt denotes the x, 
component of displacement of the vortex sheet, the representation (2.13) of $ in 
0 < x, < S can be used together with the kinematical relation 

to show that, as S --f 0, 

(2.24) 

(2.25) 

i.e. the displacement of the vortex sheet ultimately mimics exactly that of the piston. 
This physically unrealistic behaviour is a consequence of the potential-flow 

approximation to the perturbed motion, in which the streamlines (and therefore the 
vortex sheet when w, S/U + 0) are required to  turn through a right-angle at the edge 
(x:+x$ = R of the piston. At such points the pressure is infinite. Ffowcs Williams 
& Lovely (1975) argue that the value of d, would be held finite in practice by the 
action of viscosity a t  the edges of the piston, while d, would be unchanged from its 
inviscid value. The proposal is unsatisfactory, however, in that  i t  implies that the 
modification of d due to viscosity is always in phase with the displacement of the 
piston. Except in very-low-Reynolds-number flows, viscosity must cause flow 
separation a t  the edges of the piston. This will affect both the real and imaginary 
parts of d ( w o ) ,  since vorticity generated in this manner will produce variations in 
the fluid loading whose phase is dependent on the velocity at which the vorticity is 
swept downstream in the mean flow. The importance of this phenomenon will now 
be considered. 

3. The influence of separation at low Strouhal numbers in a weakly 
compressible fluid 

We shall simplify the analysis by considering a two-dimensional flat-faced piston 
that in equilibrium occupies the region lxl I < s, x2 = 0, - GO < x3 < 00. The thickness 
S of the model boundary layer in figure 3 is assumed to be small compared with all 
other characteristic lengths except the displacement amplitude h, of the piston (i.e. 
w S / U  < l ) ,  and in these circumstances we anticipate a strong interaction between 
the piston and boundary layer. I n  the absence of separation the displacement of the 
vortex sheet is given by 

which is the two-dimensional analogue of (2 .25) .  The effect of separation at the edges 
of the piston is to remove the discontinuities in 6 that  occur a t  x1 = +s. 

Separation can be modelled analytically by the introduction of sources at the edges 
of the piston. At the trailing edge, for example, we insert a line singularity in normal 
velocity whose strength is chosen to ensure that 6 varies continuously there. I n  order 
to do this i t  is first necessary to solve the auxiliary problem for the potential $s, say, 
which satisfies 

(3.1) 5 =  hoH(s-Ix,I), 

= AS(xl-s) on x, = 0, (3.2) 
& 
3x2 
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FIGURE 3. A two-dimensional piston of width 2s beneath a thin boundary layer, which, for 
wS/U 1 ,  is modelled by a step-function velocity profile. 

where A is the source strength. In  x2 > S we find as wS/U + 0, and for incompressible 
flow 

exp [ i k ( x l - s )  - I kl (x2 - S)] d k ,  (3.3) 

in which causality requires the integration contour to pass below the pole at k = w /  V .  
The integral exists in the sense of a generalized function, and provides a definition 
of $s that  is unique to within an additive arbitrary constant, since 1/1 k I is defined 
only to  within an arbitrary multiple of S(k)  (Lighthill 1958, p. 43). The corresponding 
displacement of the vortex sheet is obtained from (2.24) (in which V is replaced -- 
by-U in x2 > 8 ) :  

Since Im ( w )  > 0, we have 

iA 00 eik(Z,-S)  

6 = -J d k .  
217 --oo W -  V k  

A 
V 

cs = --H(x,-s)exp 

(3.4) 

(3.5) 

i.e. the vortex sheet is perturbed only in the region downstream of the source, where 
its displacement fluctuations propagate as a wave a t  speed V.  Combining this 
displacement with that given in (3.1) i t  follows that, if the source strength A = Vh,, 
the net displacement of the vortex sheet becomes 

c =  ~ , r H ( s - ~ x ~ ~ ) + ~ ( x , - s ) e x p  "; t-(x 1 -s) 11 ( 3 4  

(case I ) ,  which is continuous a t  the trailing edge x1 = s of the piston. 

gives the following composite representation of 5 (again for incompressible flow) : 
The same procedure is used to  eliminate the discontinuity at the leading edge, and 

(case II), which is continuous everywhere. 
The influence of separation on the stability of the piston will be examined in each 

of cases I, 11. I n  case I separation occurs a t  the trailing edge only, so that the real 
part d, of the fluid-loading operator will be unbounded because of the remaining 
singularity a t  the leading edge. As in $2, we shall formally assume that d, is 
maintained a t  some finite value by viscous action and/or local rounding of the leading 
edge of the piston (on a lengthscale that is small relative to h,) in a manner that does 
not affect the value of d,. 
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The calculation of the fluid-loading operator d ( w )  by integration of the surface 
pressure over the piston is simplified in the low-Strouhal-number limit by the fact) that 
the variation of the perturbation pressure across the boundary layer can be neglected. 
Thus the value of p just above the vortex sheet (x, = S+0) may be used, and this 
has the added advantage of permitting account to be taken of weak compressibility of the 
Jluid in a re1at)ively straightforward manner. To do this observe that in x, > S the 
potential can be expressed in the form 

where the integration is taken along the mean position y, = S+ 0 of the vortex sheet, 
and G(x, yl) is a Green function that satisfies in x, > 6 the convected wave equation 

with 

{$( -iw+U- ax, a )2-(”+”)].(x,y,) ax: ax; = 0 

(3.9) 

Here c denotes the speed of sound, and the condition of weak compressibility requires 
that the acoustic wavelength - 2 m / w  $ Zs, the width of the piston. We consider only 
flows of small mean-flow Mach number M = U/c ,  in which case the hydrodynamic 
disturbances on the vortex sheet have lengthscale Z.rrV/w 4 acoustic wavelength, and 
this justifies our earlier neglect of compressibility in calculating the effective edge 
sources responsible for separation. 

The piston is in the near field of the sound produced by its motion and interaction 
with the wake. It follows that in calculating the surface pressure from (3.8) i t  is 
sufficient to use the near-field approximation to G(x,y,). This has the general form 

G(x,y,) = ,lnI[(xl-yy1)2+(~Z-S)21:/s}+C, 

where 6‘ is a complex constant whose value is determined by boundary conditions 
far from the piston (examples are discussed below in 54). For example, C assumes 
different values in the two cases in which (i) the mean flow extends to  x, = + 00 above 
the wall, and (ii) the wall containing the piston constitutes a sidewall of a duct 
carrying the mean flow. 

(3.10) 
1 

3.1. Calculation of the j h i d  loading in case I 
At X, = S+0, just above the vortex sheet, we have a$/ax, = - ( i w -  Ua/ax,) c, the 
material derivative of the displacement. It follows from (3.8) and the linearized 
Bernoulli equation (2.15), with V replaced by U ,  that  in x, > S 

As wS/ U + 0 this expression will also give the perturbation pressure on the surface 
of the piston when 1 x1 1 < s, x2 = 6. 

Introduce the reduced frequencies 

(3.12) 
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Using (3.6) we can write in case I 

2 0 0  h U 2  
p ( [ )  =%(€+id) J G([,q){H(l- 1q1)+H(q-1)ei(9-')" ( 2 2  = S), % -1 

(3.13) 

(3.14a) 

(3.14b, c )  

The causality condition is invoked to ensure convergence of the infinite integral in 
(3.13); the condition Im ( w )  > 0 implies that  the integrand is exponentially small as 
q +a. 

The contribution to  the surface pressure from the logarithm in (3.13) is singular 
a t  the leading edge [ = - 1 of the piston because of the absence of separation (or other 
real fluid effects) a t  that  point. Extracting the singularity of the integral, one finds 
that in the neighbourhood of [ = - 1 

(3.15) 

where P denotes principal value. This is a real quantity that formally makes no 
contribution to dI(oo) .  The latter is determined by the imaginary part of p([), and 
its value (per unit length in the spanwise (x3) direction) is predicted by ( 2 . 2 ) ,  (3.13) 
to be 

(3.16) 

where 

(&r + si (2a) cos 2a- ci (2a) sin 2a) , (3.17) 1 (1 - a/# 
F(E)  = - 2(ln2-1)+ 

7r " 
in which si (x), ci (x) denote respectively sine and cosine integrals defined for x > 0 
by (Gradshteyn & Ryzhik 1980, p. 928) 

(3.18) 

The terms in the brace brackets of (3.16) that  involve a arise solely from the presence 
of the wake, i.e. as a result of trailing-edge separation. The first term in the braces 
represents the influence of compressibility, viz of radiation damping (since in practice 
Im (C) < 0). 

3.2. The &id-loading operator in case I I  
I n  this case d ( w )  is bounded because the pressure is finite at both the leading and 
trailing edges of the piston. Making use of integrals tabulated by Gradshteyn & 
Ryzhik (1980) we find 

d ( w , )  = po "P{$(21n2-3)+4c2C 
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in which y = 0.577216. . , is Euler's constant. The stability characteristics are defined 

(3 .20 )  

where, as before, the first term in the braces is negative and accounts for the radiation 
damping, and the second ( 2  0 )  denotes the destabilizing effect of separation. 

4. The stability of pistons of large and infinite aspect ratios 
4 .1 .  Case I :  trailiru-edge separation only 

The results of $ 3  are now used to examine the stability of a piston in an infinite plane 
baffle when the mean flow extends to x2 = + CO. On x2 = 6 the Green function in the 
limit of infinitesimal mean-flow Mach number is given by 

where H$,l)(x) is a Hankel function of the first kind. When xl,yl are in the 
neighbourhood of a piston of compact chord the argument of the Hankel function 
is small, and to leading order we can write, as in (3 .14 ) ,  

( 4 . 2 )  

The compactness condition wo s/c 6 1 implies that  the real part of the constant term 
on the right of ( 4 . 2 )  is negative (i.e. Re (C) < 0) and + - 00 as the sound speed c -+a 
(limit of incompressible flow). I n  this case it follows from (3 .16 ) ,  (3 .17 )  that d , ( w o )  
is negative for arbitrary values of e, (T, and therefore, according to (2.8), that the 
motion is always stable. 

It might be expected that the results of $ 3  would also yield the stability criterion 
of a piston of large, but finite, aspect ratio 1/2s ,  1 being the spanwise length of the 
piston, provided that the coefficient C in (3 .14)  could be assigned an appropriate 
value. This would be the case if wo I/ V % 1 ,  i.e. the hydrodynamic wavelength of the 
separated flow is small relative to 1, so that the motion is essentially two-dimensional 
except in the immediate neighbourhoods of the side edges of the piston. It can be 
shown (Howe 1981a) that  C should in fact take the value 

( 4 . 3 )  

where 9 = 112s denotes the aspect ratio, and e = 2.71828. .  . is the base of the natural 
logarithm. The compactness requirement is that  oo l l c  4 1 ,  so that Im (C)  + 0 as 
c +CO. A necessary condition for instability of the piston is d I ( w o )  > 0. Discarding 
the small imaginary term in (4.3), this becomes, according to ( 3 . 1 6 ) :  

2 e  
-1n-++(e) > 0. 
7l 4 9  (4.4) 

The left-hand side of this inequality is negative except for small values of c. The 
variation of +(c) with the reduced frequency E = wo s /U depends on the value of c / r ,  
which, in the vortex sheet model, is equal to V / U ,  i.e. to the ratio of the phase velocity 
of boundary-layer disturbances in the wake to the free-stream velocity. 

Figure 4 illustrates the stability boundaries defined by (4.4) in terms of the aspect 
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FIGURE 4. Stability boundaries for a rectangular piston of large aspect ratio 9 = 112s when 
separation occurs a t  t,he trailing edge. 

ratio and the reduced frequency B. The strongest tendency to  instability is associated 
with low-convection-velocity, low-Strouhal-number boundary-layer waves and pis- 
tons of small aspect ratio, although the present asymptotic theory is unlikely to 
remain valid for 9 6 5.  

4.2. Case I I :  separation at the leading and trailing edges 

The use of (3.20), (4.2) implies that for a piston of infinite aspect ratio the necessary 
condition for instability, d, > 0, becomes 

(4.5) 

This inequality can always be satisfied for sufficiently small reduced frequency c (i.e. 
sufficiently high mean-flow velocity), provided only that €/a = V / U  < 0.5. 

For an acoustically compact piston of spanwise dimension 1, Im (C) given by (4.3) 
can normally be neglected, in which case (3.20) reveals that  d, 2 0 for e =k a, so that 
the necessary condition for instability is always fulfilled. The absolute stability 
criterion follows from (2.9), which involves the internal damping of the piston. 
Recalling that d, defined in (3.20) refers to the fluid loading per unit span, we find 
that, when the small contribution from radiation damping is ignored, the motion will 
be unstable if 

sin2 a 
2p, us1 (4.6) 

The corresponding stability boundaries for three different values of €/a, the fractional 
phase velocity of the boundary-layer disturbances, are shown in figure 5. These results 
demonstrate, again, how the region of instability rapidly increases with diminishing 
phase velocity. 
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FIGURE 5 .  Stability boundaries for a rectangular piston of large aspect ratio 112s when separation 
occurs at both the leading and trailing edges. 

5. Conclusion 
The stability of boundary-layer flow over a spring-loaded piston in a wall has been 

examined by modelling the mean boundary layer by means of a step-function velocity 
profile. This is expected to be an adequate approximation at small values of the 
Strouhal number w,, 6/  U. For an ideal fluid in which the mean shear is ignored, the 
work of Ffowcs Williams & Lovely (1975) has shown that the piston can exhibit only 
a static divergence type of instability. In  the presence of a mean-velocity profile the 
piston generates boundary-layer waves in its wake whose backreaction causes i t  to 
flutter. The effect tends to he very weak, however, if viscosity is neglected in 
calculating the motion of the piston, even though disturbances created in the wake 
grow, according to linear theory, exponentially with distance downstream of the 
piston. The action of viscosity a t  the edges of the piston can result in surface-pressure 
fluctuations that are in phase with the piston velocity, and thereby lead to a net 
transfer of energy from the mean to the perturbation motion. 

In  particular, viscosity causes separation at the edges of a piston that executes 
low-Strouhal-number oscillations beneath a high-Reynolds-number boundary layer. 
This has been modelled theoretically, as in thin-airfoil theory, by an application of 
the unsteady Kutta condition a t  the edges. By this means it has been shown that 
rectangular pistons of large aspect ratio exhibit various regimes of flutter instability. 
Such pistons were considered for mathematical convenience, hut the generality of the 
conclusions a t  small reduced frequencies (based on the streamwise dimension of the 
piston) are not expected to  be significantly dependent on piston geometry. Two 
models have been examined. The first (case I) involves unsteady separation only a t  
the trailing edge of the piston, while separation is permitted a t  both the leading and 
trailing edges in case 11. I n  thin-airfoil theory i t  is usual to invoke the Kutta condition 
a t  a trailing edge, although there is no reason to exclude the possibility of unsteady 
separation a t  a sharp leading edge (cf. Howe 1981 6). I n  the piston problem it  seems 
unreasonable to demand that separation occur only at the trailing edge, so that our 
analytical conclusions for case I1 are more likely to be relevant in practice. These 
are that flutter instability is always possible in principle, for sufficiently small internal 
dumping of the piston, but more likely a t  small reduced frequencies. 
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The larger part of the work reported here was undertaken while the author was 
a t  Bolt Beranek and Newman, Inc., Cambridge, Mass. 
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